【开源项目】Flow Matching 语音合成
AI魔法学院
2023-11-13
分享海报

CFM是一种新技术,已被证明可以改进扩散模型,MetaVoicebox模型将CFM引入语音合成领域,下面是voicebox的一个工作流程图

IMG_256

Matcha-TTS是第一个开源conditional normalising flows语音合成项目,提供基于 LJSpeech VCTK 数据预训练模型以供测评

Matcha-TTS有两个主要的贡献和其他建议:

1. We propose an improved encoder-decoder TTS architecture that uses a combination of 1D CNNs and Transformers in the decoder. This reduces memory consumption and is fast to evaluate, improving synthesis speed.

相对于Grad-TTSdecoder,使用了1D CNNs替换2D CNNs、并加入Transformers

2. We train these models using optimal-transport conditional flow matching (OT-CFM) , which is a new method to learn ODEs that sample from a data distribution. Compared to conventional CNFs and score-matching probability flow ODEs, OT-CFM defines simpler paths from source to target, enabling accurate synthesis in fewer steps than DPMs.

使用Flow Matching加速技术

3. 使用旋转位置编码(rotational position embeddings) RoPE,减少存储

4. 使用MAS对齐

5. 使用snake beta激活函数

开源地址:

https://github.com/shivammehta25/Matcha-TTS

工程展示:

https://shivammehta25.github.io/Matcha-TTS/

在线推理:

https://huggingface.co/spaces/shivammehta25/Matcha-TTS

中文实现:

https://github.com/PlayVoice/Grad-TTS-Chinese

Grad-TTS-CFM,其他优化还未集成)

模型架构:

IMG_257

性能指标:

IMG_258

推理界面:

IMG_259

中文测试句子:

时光仿佛有穿越到了从前,在你诗情画意的眼波中,在你舒适浪漫的暇思里,我如风中的思绪徜徉广阔天际,仿佛一片沾染了快乐的羽毛,在云环影绕颤动里浸润着风的呼吸,风的诗韵,那清新的耳语,那婉约的甜蜜,那恬淡的温馨,将一腔情澜染得愈发的缠绵。(Grad-TTS-CFM,使用BigVGAN通用声码器,优化1&3&5还未集成,还有明显发音错误

01-steps,玩语音技术,26

04-steps,玩语音技术,26

20-steps,玩语音技术,26

出自:https://mp.weixin.qq.com/s/NHkT7DBUSw1gDaqrVkfklQ

© THE END

转载请联系本网站获得授权

投稿或版权问题请加微信:skillupvip